初三数学上册一元二次方程专练(含答案),月考前抓紧检测一遍
i初中数学可加关注
关注后上 网课、下 资料
九
上
数
学
要知道明年你们将迎来人生中的第一次选拔性考试——中考,所以,这一年的时间都是很宝贵了B2BX。不想落后他人,预习复习工作都得做到位。今天,老师和大家分享的是 初三数学上册一元二次方程专练(含答案),月考前抓紧检测一遍!
一、选择题(共7 小题)
1 .已知关于x的一元二次方程x2﹣x +k=0 的一个根是2B2BX,则k的值是( )
A .﹣2B .2C .1D .﹣1
【考点】一元二次方程的解.
【分析】知道方程的一根B2BX,把该根代入方程中,求出未知量k .
【解答】解:由题意知B2BX,
关于x 的一元二次方程x2﹣x +k=0 的一个根是2B2BX,
故4 ﹣2+k=0 B2BX,
解得k= ﹣2B2BX,
故选A .(关注公众号:初三数学语文英语)
【点评】本题主要考查了方程的根的定义B2BX,把求未知系数的问题转化为解方程的问题,是待定系数法的应用.
2 .已知关于x的方程x2﹣kx ﹣6=0的一个根为x=3B2BX,则实数k的值为( )
A .1B .﹣1C .2D .﹣2
【考点】一元二次方程的解.
【分析】一元二次方程的根就是一元二次方程的解B2BX,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
【解答】解:因为x=3 是原方程的根B2BX,所以将x=3代入原方程,即32﹣3k ﹣6=0成立,解得k=1.
展开全文
故选:A .(关注公众号:初三数学语文英语)
【点评】本题考查的是一元二次方程的根即方程的解的定义.
3 .若关于x的一元二次方程为ax2+bx+5=0 (a≠0 )的解是x=1B2BX,则2013﹣a﹣b的值是( )
A .2018B .2008C .2014D .2012
【考点】一元二次方程的解.
【分析】将x=1 代入到ax2+bx+5=0 中求得a+b 的值B2BX,然后求代数式的值即可.
【解答】解:∵x=1 是一元二次方程ax2+bx+5=0 的一个根B2BX,
∴a •12+b •1+5=0 B2BX,
∴a+b= ﹣5B2BX,
∴2013 ﹣a﹣b=2013﹣(a+b )=2013﹣(﹣5)=2018.
故选:A .(关注公众号:初三数学语文英语)
【点评】此题主要考查了一元二次方程的解B2BX,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式a +b 的值.
4 .一元二次方程x2+px ﹣2=0的一个根为2B2BX,则p的值为( )
A .1B .2C .﹣1D .﹣2
【考点】一元二次方程的解.(关注公众号:初三数学语文英语)
【专题】待定系数法.
【分析】把x=2 代入已知方程B2BX,列出关于p的一元一次方程,通过解该方程来求p的值.
【解答】解:∵一元二次方程x 2+px ﹣2=0的一个根为2B2BX,
∴22+2p ﹣2=0B2BX,
解得p= ﹣1.
故选:C .(关注公众号:初三数学语文英语)
【点评】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根B2BX,所以,一元二次方程的解也称为一元二次方程的根.
5 .若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0 的一个根B2BX,则a的值为( )
A .1或4B .﹣1或﹣4C .﹣1或4D .1或﹣4
【考点】一元二次方程的解.(关注公众号:初三数学语文英语)
【专题】计算题.
【分析】将x= ﹣2代入关于x的一元二次方程x2﹣ax+a2=0 B2BX,再解关于a的一元二次方程即可.
【解答】解:∵x= ﹣2是关于x的一元二次方程x2﹣ax+a2=0 的一个根B2BX,
∴4+5a+a2=0 B2BX,
∴(a +1 )(a+4 )=0B2BX,
解得a 1= ﹣1B2BX,a2= ﹣4,
故选:B .
【点评】本题主要考查了一元二次方程的解的定义B2BX,解题关键是把x 的值代入,再解关于a的方程即可.
6 .已知x=2是一元二次方程x2﹣2mx +4=0 的一个解B2BX,则m的值为( )
A .2B .0C .0或2D .0或﹣2
【考点】一元二次方程的解.(关注公众号:初三数学语文英语)
【分析】直接把x=2 代入已知方程就得到关于m的方程B2BX,再解此方程即可.
【解答】解:∵x=2 是一元二次方程x2﹣2mx +4=0 的一个解B2BX,
∴4 ﹣4m+4=0 B2BX,
∴m=2 .
故选:A .
【点评】本题考查的是一元二次方程的根即方程的解的定义.把求未知系数的问题转化为方程求解的问题.
7 .已知关于x的一元二次方程x2+ax+b=0 有一个非零根﹣bB2BX,则a﹣b的值为( )
A .1B .﹣1C .0D .﹣2
【考点】一元二次方程的解.
【分析】由于关于x 的一元二次方程x 2+ax+b=0 有一个非零根﹣bB2BX,那么代入方程中即可得到b2﹣ab +b=0 ,再将方程两边同时除以b即可求解.
【解答】解:∵关于x 的一元二次方程x2+ax+b=0 有一个非零根﹣bB2BX,
∴b2﹣ab +b=0 B2BX,
∵﹣b ≠0 B2BX,
∴b≠0 B2BX,
方程两边同时除以b B2BX,得b﹣a+1=0 ,
∴a ﹣b=1.
故选:A .
【点评】此题主要考查了一元二次方程的解B2BX,解题的关键是把已知方程的根直接代入方程进而解决问题.
二、填空题(共16 小题)
8 .若x=1是一元二次方程x2+2x+m=0 的一个根B2BX,则m的值为﹣3 .
【考点】一元二次方程的解.
【分析】将x=1 代入方程得到关于m的方程B2BX,从而可求得m的值.
【解答】解:将x=1 代入得:1+2+m=0 B2BX,
解得:m= ﹣3.
故答案为:﹣3 .
【点评】本题主要考查的是方程的解(根)的定义B2BX,将方程的解(根)代入方程得到关于m 的方程是解题的关键.2·1·c·n·j·y
9 .若x=1是一元二次方程x2+2x+a=0 的一个根B2BX,那么a=﹣3 .
【考点】一元二次方程的解.
【分析】根据方程的根的定义将x=1 代入方程得到关于a的方程B2BX,然后解得a的值即可.
【解答】解:将x=1 代入得:1+2+a=0 B2BX,
解得:a= ﹣3.
故答案为:﹣3 .
【点评】本题主要考查的是方程的解(根)的定义和一元一次方程的解法B2BX,将方程的解代入方程是解题的关键.
10 .关于m的一元二次方程nm2﹣n 2m ﹣2=0的一个根为2B2BX,则n2+n﹣2 =26.
【考点】一元二次方程的解.
【专题】计算题.
【分析】先根据一元二次方程的解的定义得到4 n ﹣2n2﹣2=0 B2BX,两边除以2n得n+=2,再利用完全平方公式变形得到原式= (n+)2﹣2 ,然后利用整体代入的方法计算.
【解答】解:把m=2 代入nm2﹣n 2m ﹣2=0得4n ﹣2n2﹣2=0 B2BX,
所以n +=2B2BX,
所以原式= (n+)2﹣2
= (2)2﹣2
=26 .
故答案为:26 .(关注公众号:初三数学语文英语)
【点评】本题考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根B2BX,所以,一元二次方程的解也称为一元二次方程的根.也考查了代数式的变形能力.
11 .若一元二次方程ax2﹣bx ﹣2015=0有一根为x=﹣1B2BX,则a+b=2015.
【考点】一元二次方程的解.
【分析】由方程有一根为﹣1 B2BX,将x=﹣1代入方程,整理后即可得到a+b 的值.
【解答】解:把x= ﹣1代入一元二次方程ax2﹣bx ﹣2015=0得:a+b ﹣2015=0B2BX,
即a +b=2015 .
故答案是:2015 .
【点评】此题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解B2BX,关键是把方程的解代入方程.
12 .已知m=1是一元二次方程m2+am+b=0 的一个根B2BX,则代数式a2+b2+2ab 的值是1.
【考点】一元二次方程的解.(关注公众号:初三数学语文英语)
【分析】将x=1 代入到x2+ax+b=0 中求得a+b 的值B2BX,然后求代数式的值即可.
【解答】解:∵x=1 是一元二次方程x2+ax+b=0 的一个根B2BX,
∴12+a+b=0 B2BX, (关注公众号:初三数学语文英语)
∴a+b= ﹣1B2BX,
∴a2+b2+2ab= (a+b )2= (﹣1)2=1 .
故答案为:1 .
【点评】此题主要考查了一元二次方程的解B2BX,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式的值.(关注公众号:初三数学语文英语)
13 .若x=1是关于x的一元二次方程x2+3mx+n=0 的解B2BX,则6m+2n=﹣2 .
【考点】一元二次方程的解.
【分析】先把x=1 代入x2+3mx+n=0 B2BX,得到3m+n= ﹣1,再把要求的式子进行整理,然后代入即可.
【解答】解:把x=1 代入x2+3mx+n=0 得:
1+3m+n=0 B2BX,
3m+n= ﹣1B2BX,
则6m +2n=2 (3m+n )=2×(﹣1 )=﹣2;
故答案为:﹣2 .(关注公众号:初三数学语文英语)
【点评】此题考查了一元二次方程的解B2BX,解题的关键是把x 的值代入,得到一个关于m,n的方程,不要求m.n的值,要以整体的形式出现.
14 .一元二次方程(a+1 )x2﹣ax +a2﹣1=0 的一个根为0B2BX,则a=1.
【考点】一元二次方程的定义.
【专题】计算题;待定系数法.
【分析】根据一元二次方程的定义和一元二次方程的解的定义得到a +1≠0 且a2﹣1=0 B2BX,然后解不等式和方程即可得到a的值.
【解答】解:∵一元二次方程(a +1 )x2﹣ax +a2﹣1=0 的一个根为0B2BX,
∴a+1≠0 且a2﹣1=0 B2BX,
∴a=1 .
故答案为:1 .(关注公众号:初三数学语文英语)
【点评】本题考查了一元二次方程的定义:含一个未知数B2BX,并且未知数的最高次数为2 的整式方程叫一元二次方程,其一般式为ax2+bx+c=0 (a≠0 ).也考查了一元二次方程的解的定义.
15 .已知关于x的一元二次方程2x2﹣3kx +4=0 的一个根是1B2BX,则k=2.
【考点】一元二次方程的解.
【专题】待定系数法.(关注公众号:初三数学语文英语)
【分析】把x=1 代入已知方程列出关于k的一元一次方程B2BX,通过解方程求得k的值.
【解答】解:依题意B2BX,得
2×12﹣3k ×1+4=0 B2BX,即2﹣3k+4=0 ,
解得B2BX,k=2 .
故答案是:2 .
【点评】本题考查了一元二次方程的解的定义.此题是通过代入法列出关于k 的新方程B2BX,通过解新方程可以求得k的值.(关注公众号:初三数学语文英语)
16 .若正数a是一元二次方程x2﹣5x +m=0 的一个根B2BX,﹣a是一元二次方程x2+5x ﹣m=0的一个根,则a的值是5.
【考点】一元二次方程的解.
【专题】计算题.
【分析】把x=a 代入方程x2﹣5x +m=0 B2BX,得a 2﹣5a +m=0 ①,把x=﹣a代入方程方程x2+5x ﹣m=0,得a2﹣5a ﹣m=0②,再将①+② ,即可求出a的值.
【解答】解:∵a 是一元二次方程x2﹣5x +m=0 的一个根B2BX,﹣a是一元二次方程x2+5x ﹣m=0的一个根,
∴a2﹣5a +m=0 ①B2BX,a2﹣5a ﹣m=0②,
①+② B2BX,得2(a2﹣5a )=0,
∵a>0 B2BX,
∴a=5 .
故答案为:5 .(关注公众号:初三数学语文英语)
【点评】本题主要考查的是一元二次方程的根即方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根B2BX,所以,一元二次方程的解也称为一元二次方程的根.
17 .若关于x的一元二次方程x2+3x+a=0 有一个根是﹣1B2BX,则a=2.
【考点】一元二次方程的解.
【分析】把x= ﹣1代入原方程B2BX,列出关于a的新方程,通过解新方程可以求得a的值.
【解答】解:∵关于x 的一元二次方程x2+3x+a=0 有一个根是﹣1B2BX,
∴(﹣1 )2+3×(﹣1 )+a=0 B2BX,
解得a=2 B2BX,
故答案为:2 .
【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解B2BX,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
18 .已知x=﹣1是关于x的方程2x2+ax ﹣a2=0 的一个根B2BX,则a=﹣2 或1.
【考点】一元二次方程的解.
【专题】判别式法.
【分析】方程的解就是能使方程左右两边相等的未知数的值B2BX,把x= ﹣1代入方程,即可得到一个关于a的方程,即可求得a的值.2-1-c-n-j-y
【解答】解:根据题意得:2 ﹣a﹣a2=0
解得a= ﹣2或1.
故答案为:﹣2 或1.(关注公众号:初三数学语文英语)
【点评】本题考查B2BX了一元二次方程的解.一元二次方程的根一定满足该方程的解析式.
19 .已知x=3是方程x2﹣6x +k=0 的一个根B2BX,则k=9.
【考点】一元二次方程的解.
【分析】一元二次方程的根就是一元二次方程的解B2BX,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
【解答】解:把x=3 代入方程x2﹣6x +k=0 B2BX,可得9﹣18+k=0 ,
解得k=9 .
故答案为:9 .
【点评】本题考查的是一元二次方程的根即方程的解的定义B2BX,比较简单.
20 .已知关于x的方程x2﹣3x +m=0 的一个根是1B2BX,则m=2,另一个根为2.
【考点】一元二次方程的解;根与系数的关系.
【专题】待定系数法.
【分析】根据方程有一根为1 B2BX,将x=1代入方程求出m的值,确定出方程,即可求出另一根.
【解答】解:将x=1 代入方程得:1﹣3+m=0 B2BX,
解得:m=2 B2BX,
方程为x 2﹣3x +2=0 B2BX,即(x﹣1)(x﹣2)=0,
解得:x=1 或x=2B2BX,
则另一根为2 .
故答案为:2 B2BX,2.
【点评】此题考查了一元二次方程的解B2BX,方程的解即为能使方程左右两边相等的未知数的值.
21 .若x=﹣1是关于x的一元二次方程x2+3x+m+1=0 的一个解B2BX,则m的值为1.
【考点】一元二次方程的解.
【专题】计算题.
【分析】根据x= ﹣1是已知方程的解B2BX,将x=﹣1代入方程即可求出m的值.
【解答】解:将x= ﹣1代入方程得:1﹣3+m+1=0 B2BX,
解得:m=1 .
故答案为:1
【点评】此题考查了一元二次方程的解B2BX,方程的解即为能使方程左右两边相等的未知数的值.
22 .已知关于x的一元二次方程2x2﹣3mx ﹣5=0的一个根是﹣1B2BX,则m=1.
【考点】一元二次方程的解.
【分析】设一元二次方程2x 2﹣3mx ﹣5=0的另一个根aB2BX,利用根与系数的关系先求出a,再得利用根与系数的关系先求出m即可.
【解答】解:∵设一元二次方程2x 2﹣3mx ﹣5=0的另一个根aB2BX,
∴a×(﹣1 )=﹣B2BX,解得a= ,
∴+(﹣1 )=B2BX,解得m=1 .
故答案为:1 .
【点评】本题主要考查了一元二次方程的解B2BX,解题的关键是灵活运用根与系数的关系.
23 .已知关于x的方程x2+2x+k=0 的一个根是﹣1B2BX,则k=1.
【考点】一元二次方程的解.(关注公众号:初三数学语文英语)
【分析】将x= ﹣1代入已知方程B2BX,列出关于k的新方程,通过解新方程即可求得k的值.
【解答】解:根据题意B2BX,得
(﹣1 )2+2×(﹣1 )+k=0 B2BX,
解得k=1 ;
故答案是:1 .
【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解B2BX,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
三、解答题
24 .已知关于x的一元二次方程x2+x+m2﹣2m=0 有一个实数根为﹣1B2BX,求m的值及方程的另一实根.
【考点】一元二次方程的解;根与系数的关系.(关注公众号:初三数学语文英语)
【分析】把x= ﹣1代入已知方程列出关于m的新方程B2BX,通过解该方程来求m的值;然后结合根与系数的关系来求方程的另一根.
【解答】解:设方程的另一根为x 2B2BX,则
﹣1 +x2= ﹣1B2BX,
解得x 2=0 .
把x= ﹣1代入x2+x+m2﹣2m=0 B2BX,得
(﹣1 )2+(﹣1 )+m2﹣2m=0 B2BX,即m(m﹣2)=0,
解得m 1=0 B2BX,m2=2 .
综上所述B2BX,m 的值是0或2,方程的另一实根是0.
【点评】本题主要考查了一元二次方程的解.一元二次方程的根就是一元二次方程的解B2BX,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
关注i初中数学公众号
评论